The synthesis of angularly fused polyaromatic compounds by using a light-assisted, base-mediated cyclization reaction

Rakhi Pathak, Kantharuby Vandayar, Willem A. L. van Otterlo, Joseph P. Michael, Manuel A. Fernandes and Charles B. de Koning*

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050, South Africa. E-mail: dekoning@aurum.chem.wits.ac.za; Fax: 27 + 11 + 717 6749; Tel: 27 + 11 + 717 6724

Received 23rd August 2004, Accepted 4th October 2004 First published as an Advance Article on the web 4th November 2004

The synthesis of substituted polyaromatic compounds that contain at least four benzene rings fused together in an angular fashion is described. Suzuki coupling of 1-bromo-3,4-dihydronaphthalene-2-carbaldehyde with a number of aromatic boronic acids affords products such as 1-(1,4-dimethoxy-3-methyl-2-naphthyl)-3,4-dihydronaphthalene-2-carbaldehyde. Exposure of these dihydronaphthalenes to potassium *tert*-butoxide and DMF at 80 °C yields polyaromatic compounds such as 9,14-dimethoxynaphtho[1,2-a]anthracene.

Introduction

The Polycyclic Aromatic Hydrocarbons (PAHs) form a large class of compounds found mainly in petrochemical sources. Their activity as carcinogens was first recognized more than eighty years ago; indeed, they were the first organic compounds (as distinct from microorganisms) to be demonstrably effective in causing disease. More recently, this class of compounds has been studied extensively for other reasons. For example, since the discovery of fullerenes, the synthesis of PAHs has witnessed a major renaissance.2 However of interest to our research group is the large number of polyaromatic and aromatic compounds being used as ligands in transition metal-catalysed reactions. The prototypical, and still most frequently used, chiral phosphinecontaining polyaromatic ligand is BINAP 1 (Fig. 1), which gained prominence as a result of the work of Noyori.^{3,4} Another well-known binaphthyl ligand is binaphthol 2, derivatives of which are also widely used in asymmetric synthesis, either as ligands in their own right or as chiral auxiliaries.⁵⁻⁸ However, these ligands are not limited to polyaromatic compounds containing a naphthalene backbone, as illustrated, for example, by the polycyclic aromatic ligands 3a9 and 3b,10,11 as well as the phenanthrene complex 3c. 12 Therefore new methods for the synthesis of substituted aromatic and polyaromatic compounds with the potential to be converted into ligands for metalcatalyzed reactions are important.

(R)-1, R = PPh₂
(R)-2, R = OH

PPh₂
PPh₂
PPh₂
2

Fig. 1 Representative aromatic ligands.

In 1997 we reported that treatment of o-allyl benzaldehydes and analogous aryl ketones with potassium tert-butoxide and simultaneous irradiation from a high-pressure mercury lamp resulted in the formation of naphthalenes, such as shown in the conversion of $4 \rightarrow 5$. ¹³ Since that time we have extended the use of this methodology to the synthesis of polyaromatic compounds such as phenanthrenes $(e.g. \ 6 \rightarrow 7)^{14}$ (Scheme 1). In addition, benzo- and pyrido-fused carbazoles have been synthesized using this methodology. ^{15,16} In this paper we wish to disclose the extension of this methodology for the synthesis of substituted polyaromatic compounds that contain at least four benzene rings fused together in an angular fashion.

Scheme 1 Synthesis of naphthalenes and phenanthrenes. *Reagents and conditions*: (a) KOBu¹, DMF, 80 °C, hy; **5**, 81%; **7**, 70%. ¹⁴

Results and discussion

Treatment of 1-bromo-3,4-dihydronaphthalene-2-carbaldehyde **8**^{17,18} with a variety of aromatic boronic acids **9a-d** under typical Suzuki coupling conditions resulted in the formation of the desired 3,4-dihydronaphthalenes **10a-d** in acceptable to good yields (Scheme 2, Table 1). With these products in hand, the stage was now set to attempt our novel reaction to produce the desired polyaromatic compounds. We believed that under the reaction conditions not only would ring formation occur but also aromatization of the 3,4-dihydronaphthalene was to be expected.

Subjecting substrate **10a** to our normal reaction conditions (4 eq. KOBu¹, DMF, 80 °C and $h\nu$) resulted in the formation of the desired product **11a**^{19,20} in good yield. Benzo[c]phenanthrene (BcP) **11a**, is known to be a relatively weak carcinogen.¹⁹

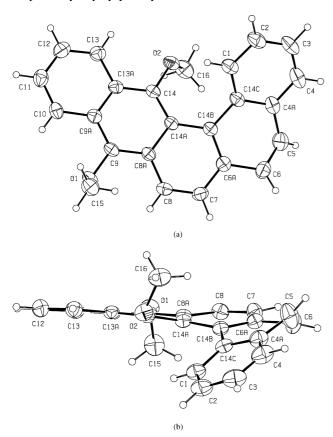
Scheme 2 Synthesis of polyaromatic compounds. *Reagents and conditions*: (a) 10 mol% Pd(PPh₃)₄, 2 M aq. Na₂CO₃, DME–EtOH; (b) KOBu^t, DMF, 80 °C, hv. For yields see Table 1.

Table 1 Yields of polyaromatic compounds 10 and 11 (see Scheme 2)

11; Yield (%)	No hv
11 70a	
11a; /8" 11b; 93 ^b	
11c; 70, 11d; 14	
, , ,	11e ; 79, 11f ; 0 ^b
	11a; 78 ^a 11b; 93 ^b

^a 4 eq KOBu^t. ^b 8 eq KOBu^t.

However, attempting the same ring closing reaction on the remaining three substrates 10b-d proved to be more problematic. For substrates 10c and 10d presumably this is because the portion of the molecule derived from the boronic acid contains substituents other than hydrogen in all positions *ortho* to the stereogenic axis, causing out-of-plane twisting such that steric hindrance to rotation makes the ring-closing reaction more difficult.


Treatment of substrates 10b and 10c under our standard ring closing reaction conditions (4 eq. KOBu^t, DMF, 80 °C and hv) gave the desired products 11b and 11c but the reactions were not clean. In the case of 11c it was clear that another unstable product 11d was also formed in low yield if only 4 equivalents of potassium tert-butoxide was used. Examination of the ¹H NMR spectrum of this product showed clearly that ring closure had taken place as the signals arising from aromatic methyl and aldehyde substituents were absent, but that aromatization of the dehydronaphthalene had not yet taken place as there was a complex set of signals between δ 2.72 and 3.13. Further evidence to support the identity of this product was provided by a high-resolution mass spectrum (expected for C₂₂H₁₆ 280.1252; found 280.1255), which suggested that product 11d was also formed under the reaction conditions. As the yield of 11d was low and the product appeared to be unstable we were unable to fully characterize the product. However, exposure of 10b and 10c to the same reaction conditions but this time doubling the amount of base to 8 equivalents of potassium tertbutoxide afforded the desired products, 11b and pentahelicine 11c, in good yields (93% and 82% respectively). Finally, 9,14dimethoxynaphtho[1,2-a]anthracene 11e was obtained from 10d. In this case the formation of the desired product was best achieved by treating the substrate 10d with 8 equivalents of potassium *tert*-butoxide in the *absence* of the light source; this afforded the pentacyclic product 11e in 79% yield. Using the light source, 11e was obtained in poor yield (18%) with the major product being 11f, the product of aromatization of the dihydronaphthalene 10d.

We have speculated about the mechanism of this reaction resulting in the formation of substituted polyaromatic compounds in a previous paper.¹⁴ It is possible that an anionic mechanism is in operation as the protons in the benzylic position are acidic and can therefore, under basic conditions, react with the carbonyl-containing substituent on the conjoined aromatic ring (see structure 12, Fig. 2). It is interesting to note that the light source often speeds up the reaction, and therefore it is also possible that the reaction may proceed through an anionic photoenolisation process. In our work it has been found that the reaction is facilitated *specifically* by *tert*-butoxide bases.¹⁴ Therefore intermediates such as 13 may be formed in the reaction. These bases can also act as single electron transfer reagents which may also aid the photoenolisation.¹⁴

Fig. 2 Possible intermediates in the reaction.

However, it is also of interest that the formation of 11e proceeded better in the *absence* of the light source. This may be as a result of the aromatisation of the dihydronaphthalene of 10d proceeding more rapidly in the presence of the light source and oxygen, which was not rigorously excluded to afford predominantly 11f. The product 11f is then unable to undergo the required ring closure reaction as torsion about the biaryl axis probably positions the two reacting groups (the methyl substituent and the carbonyl) almost perpendicular to each other, irrespective of the actual mechanism involved.

An X-ray crystal structure of 9,14-dimethoxynaphtho[1,2-a]anthracene 11e clearly showed the non-planar nature of the product, as expected (Fig. 3). The torsion angle C(14a)–C(14b)–C(14c)–C(1) showed clear deviation from planarity (28.2°), thereby highlighting the steric congestion in the bay region. These findings also vindicate our concerns regarding steric hindrance in the formation of the product. The deformations due to steric interaction also seem to result in increased olefinic character of some of the aromatic bonds. This is particularly clear for the bond between carbon atoms C14b and C14c, where the bond distance is 1.480 Å. Examination of the literature²¹ indicates that even a simple polycyclic compound such as 11a will show deviation from planarity. We believe that 11e will display highly carcinogenic properties, as these are often associated with nonplanarity of polycyclic hydrocarbons.²¹

Fig. 3 ORTEP diagrams of the X-ray crystal structure of 9,14-dimethoxynaphtho[1,2-*a*]anthracene **11e** (ellipsoids at 50% probability). (a) Top view; (b) side view.

In an extension of the above investigation, 2-bromobenzal-dehyde **14** was treated with 1,4-dimethoxy-3-methyl-2-naphthyl-boronic acid **9d** under Suzuki coupling conditions to afford the arylnaphthalene **15** in good yield (Scheme 3). Ring closure on **15** proceeded uneventfully to provide **16** in an excellent yield. Additionally, **15** was converted into the quinone **17**, exposure of which to potassium *tert*-butoxide in DMF under identical conditions gave the known quinone **18**.

Aromatic ring formation leading to 18 from a quinone precursor such as 17 has not been observed previously. While

Scheme 3 The synthesis of benzo[a]anthracene-7,12-dione. *Reagents and conditions:* (a) 10 mol% Pd(PPh₃)₄, 2 M aq. Na₂CO₃, DME–EtOH, 100%; (b) KOBu^t, DMF, 80 °C, hv, 87%; (c) CAN, H₂O–MeCN, 82%; (d) KOBu^t, DMF, 80 °C, hv, 82%.

detailed studies have not yet been conducted into the reaction mechanism of this process we believe that the reaction probably proceeds through the stabilized anionic intermediate 19 (Fig. 2), which is effectively a vinylogous enolate.

In conclusion, we have been able to demonstrate that our methodology for the synthesis of aromatic systems can be extended to the synthesis of strained polycyclic aromatic systems containing four or five benzene rings fused together in an angular fashion. The method provides a novel and simple procedure to access the desired products. It is also relatively versatile and could provide a range of products that are not accessible by traditional methods. At present we are working on using the developed methodology to include the synthesis of aromatic substrates that may have potential as ligands for transition metal-catalyzed reactions. In addition, the products 11a, 11b, 11c, 11e and 16 will be sent for biological evaluation as possible carcinogens.

Experimental

¹H NMR and ¹³C NMR spectra were recorded either on a Bruker Ultrashield 300 or on a Bruker DRX-400 spectrometer at the frequency indicated. *J*-Values are given in Hz. Infra-red spectra were recorded on either a Bruker IFS 25 Fourier Transform spectrometer, or on a Bruker Vector 22 Fourier Transform spectrometer. Mass spectra were recorded on a Kratos MS 9/50, VG 70E MS or a VG 70 SEQ mass spectrometer. Macherey-Nagel Kieselgel 60 (particle size 0.063–0.200 mm) was used for conventional silica gel chromatography, and Macherey-Nagel Kieselgel 60 (particle size 0.040–0.063 mm) was used for preparative flash chromatography. All solvents used for reactions and chromatography were distilled prior to use.

1-Bromo-3,4-dihydronaphthalene-2-carbaldehyde 8

PBr₃ (3.3 cm³, 34 mmol) was added dropwise to a solution of dry DMF (3.2 cm³, 41 mmol) in dry CH₂Cl₂ (60 cm³) cooled at 0 °C. The mixture was stirred for 1 h at 0 °C and a pale yellow suspension was formed. To this was added a solution of α-tetralone (1.8 cm³, 14 mmol) in dry CH₂Cl₂ (50 cm³), and the solution was heated at reflux for 1 h. After cooling the mixture to 0 °C, aqueous NaHCO₃ (80 cm³) was added slowly until the effervescence had subsided. The mixture was extracted with CH₂Cl₂ (2 × 30 cm³) and the organic phase was

then dried (MgSO₄) to give a yellow oil. The crude product was then purified by column chromatography (20% EtOAc–hexane) to afford a yellow solid, 1-bromo-3,4-dihydronaphthalene-2-carbaldehyde **8** (2.21 g, 76%): m.p. 42–43 °C (from EtOH; lit., 17,18 42–44 °C); 1 H NMR (400 MHz; CDCl₃; Me₄Si) 2.62 (2H, t, *J* 8.0, CH₂), 2.83 (2H, t, *J* 8.0, CH₂), 7.19 (1H, dd, *J* 8.1 and 1.4, ArH), 7.26–7.38 (2H, m, 2 × ArH), 7.89 (1H, dd, *J* 8.6, 1.9, ArH) and 10.25 (1H, s, CHO); MS m/z 237 (M⁺, 25%), 236 (26), 157 (13), 129 (76), 128 (100) and 127 (17).

Representative procedure for the preparation of the boronic acids

Toluene-2-boronic acid 9a. nBuLi $(1.6 \text{ M}, 2.1 \text{ cm}^3, 3.3 \text{ mmol})$ was added dropwise to a solution of 2-bromotoluene (0.55 g, 3.2 mmol) in THF (15 cm^3) at $-78 \,^{\circ}\text{C}$, resulting in a white suspension. The reaction mixture was stirred for 30 min at $-78 \,^{\circ}\text{C}$, then B(OMe)₃ $(0.92 \, \text{cm}^3, 8.2 \, \text{mmol})$ was added. The resulting mixture was stirred at $-78 \,^{\circ}\text{C}$ for a further 30 min and then allowed to warm to rt. The reaction mixture was acidified with 10% aq. HCl solution and extracted with Et₂O $(3 \times 30 \, \text{cm}^3)$. The organic layer was then dried (MgSO₄) and concentrated under vacuum to afford an off-white crystalline material, toluene-2-boronic acid **9a** $(0.40 \, \text{g}, 92\%)$ that was used without further purification or characterization.

4-Methoxy-2-methylphenylboronic acid **9b**, 2-methyl-1-naphthylboronic acid **9c**, and 1,4-dimethoxy-3-methyl-2-naphthylboronic acid **9d** were prepared in a similar manner from 4-bromo-2-methylanisole,²² 1-bromo-2-methylnaphthalene²³ and 2-bromo-1,4-dimethoxy-3-methylnaphthalene,²⁴ respectively.

Representative procedure for the Suzuki coupling reactions

1-(2-Methylphenyl)-3,4-dihydronaphthalene-2-carbaldehyde 10a. A solution of 1-bromo-3,4-dihydronaphthalene-2-carbaldehyde 8 (0.050 g, 0.21 mmol) in DME (1 cm³) was deoxygenated by passing N₂ through the mixture for 5 min. The solution was then added to Pd(PPh₃)₄ (10 mol%, 0.024 g, 0.021 mmol) and stirred under an atmosphere of N_2 for 10 min at rt. A solution of 2-methylphenylboronic acid 9a (0.043 g, 0.32 mmol) in EtOH (0.4 cm³) was deoxygenated and added to the reaction mixture. The mixture was stirred for a further 10 min. A deoxygenated 2 M aqueous Na₂CO₃ solution (0.92 cm³, 1.8 mmol) was then added to the reaction mixture that was stirred at rt for a further 5 min before being heated at reflux for 46 h. The mixture was cooled to rt and quenched with H₂O (20 cm³) after which the organic material was extracted with CH₂Cl₂ $(3 \times 30 \text{ cm}^3)$, dried (MgSO₄) and the solvent was evaporated under reduced pressure. The crude product was subjected to column chromatography (5-10% EtOAc-hexane) to afford the known product, 1-(2-methylphenyl)-3,4-dihydronaphthalene-2carbaldehyde 10a as a yellow solid (0.046 g, 88%). The spectroscopic data were in agreement with those reported by Kirsch.25 m.p. 43-45 °C (lit. m.p. 54 °C²⁵); ¹H NMR (300 MHz; CDCl₃; Me₄Si) 2.08 (3H, s, ArCH₃), 2.55–2.66 (1H, m, CH), 2.73–2.83 (1H, m, CH), 2.91–2.96 (2H, m, CH₂), 6.74 (1H, d, J 7.7, ArH), 7.07-7.18 (2H, m, 2 × ArH), 7.25-7.38 (5H, m, 5 × ArH) and 9.48 (1H, s, CHO); ¹³C NMR (75 MHz; CDCl₃) 19.6 (CH₂), 19.8 (CH₂), 27.6 (ArCH₃), 125.7 (CH), 126.8 (CH), 127.5 (CH), 127.8 (CH), 128.5 (CH), 129.5 (CH), 130.2 (CH), 130.5 (CH), 134.3 (C), 134.4 (C), 134.8 (C), 136.8 (C), 138.4 (C), 154.3 (C) and 193.1 (CHO); MS m/z 248 (M⁺, 30%) and 233 (100).

The following compounds were prepared in a similar manner.

1-(4-Methoxy-2-methylphenyl)-3,4-dihydronaphthalene-2-carbaldehyde 10b. The product **10b** was isolated as a yellow oil (0.117 g, 100%): IR ν_{max} (film)/cm⁻¹ 1735, 1659, 1611, 1561, 1498, 1455, 1364, 1306, 1241, 1201, 1185 and 1159; ¹H NMR (300 MHz; CDCl₃; Me₄Si) 2.05 (3H, s, ArCH₃), 2.56–2.64 (1H, m, CH), 2.72–2.82 (1H, m, CH), 2.89–2.94 (1H, m, CH₂), 3.86 (3H, s, OCH₃), 6.77–6.84 (3H, m, 3 × ArH), 7.06–7.13 (2H, m, 2 × ArH), 7.22–7.28 (2H, m, 2 × ArH) and 9.51 (1H, s, CHO);

¹³C NMR (100MHz; CDCl₃) 20.0 (2 × CH₂), 27.6 (ArCH₃), 55.2 (OCH₃), 111.0 (CH), 115.8 (CH), 126.8 (CH), 127.0 (C), 127.5 (CH), 127.8 (CH), 128.1 (C), 130.2 (CH), 131.7 (CH), 134.7 (C), 138.3 (C), 138.4 (C), 154.1 (C), 159.6 (C) and 193.3 (CHO); MS m/z 278 (79%), 263 (M⁺, 100), 247 (12) and 202 (13); HRMS calcd for C₁₉H₁₈O₂: 278.1307, found: 278.1313.

1-(2-Methyl-1-naphthyl)-3,4-dihydronaphthalene-2-carbaldehyde **10c.** The product **10c** was isolated as a yellow solid (0.219 g, 58%) together with recovered starting material, 1-bromo-3,4-dihydronaphthalene-2-carbaldehyde **8** (0.080 g): m.p. 112–115 °C; IR v_{max} (solid)/cm⁻¹ 2842, 1665, 1607, 1562, 1506, 1428, 1360, 1336, 1286, 1260, 1237, 1189 and 1158; ¹H NMR (300 MHz; CDCl₃; Me₄Si) 2.27 (3H, s, ArCH₃), 2.79–2.83 (2H, m, CH₂), 3.02-3.09 (2H, m, CH₂), 6.58 (1H, d, J 7.7, ArH), 6.94-6.99 (1H, m, ArH), 7.23-7.45 (5H, m, $5 \times$ ArH) 7.52 (1H, d, J 8.3, ArH), 7.86 (2H, d, J 8.3, 2 × ArH) and 9.27 (1H, s, CHO); ¹³C NMR (75 MHz; CDCl₃) 19.8, 20.2 (2 × CH₂), 27.6 (ArCH₃), 125.4 (CH), 125.4 (CH), 126.8 (CH), 127.0 (CH), 127.2 (CH), 128.0 (CH), 128.0 (CH), 128.3 (CH), 128.4 (CH), 130.4 (CH), 130.8 (C), 131.8 (C), 133.0 (C), 134.1 (C), 134.5 (C), 135.4 (C), 138.5 (C), 152.6 (C) and 193.0 (CHO); MS m/z 299 (25%), 298 (M⁺, 100), 297 (16), 284 (15), 283 (69), 281 (23), 279 (17), 269 (26), 255 (20), 254 (21), 253 (38), 252 (35) and 239 (19); HRMS calcd for C₂₂H₁₈O: 298.1358, found 298.1364.

1-(1,4-Dimethoxy-3-methyl-2-naphthyl)-3,4-dihydronaphthalene-2-carbaldehyde 10d. The product 10d was isolated as a yellow solid (0.216 g, 72%): m.p. 96–97 °C; IR ν_{max} (solid)/cm⁻¹ 2937, 2840, 1662, 1603, 1561, 1450, 1350, 1289, 1262, 1183, 1092, 1068, 964, 816 and 771; ¹H NMR (300 MHz; CDCl₃; Me₄Si) 2.15 (3H, s, ArCH₃), 2.73–2.80 (2H, m, CH₂), 2.97–3.03 (2H, m, CH₂), 3.67 (3H, s, OCH₃), 3.92 (3H, s, OCH₃), 6.80 (1H, d, J 7.8, ArH), 7.04–7.09 (1H, m, ArH), 7.24–7.30 (2H, m, $2 \times ArH$), 7.50–7.61 (2H, m, $2 \times ArH$), 8.08–8.11 (1H, m, ArH), 8.16 (1H, d, J 8.1, ArH) and 9.56 (1H, s, CHO); ¹³C NMR (75 MHz; CDCl₃) 13.2 (CH₂), 19.9 (CH₂), 27.5 (ArCH₃), 61.5 (OCH₃), 61.9 (OCH₃), 122.3 (CH), 122.8 (CH), 125.8 (C), 125.9 (C), 126.0 (CH), 126.8 (CH), 126.8 (CH), 126.9 (CH), 127.2 (C), 128.0 (CH), 129.0 (C), 130.3 (CH), 134.3 (C), 134.8 (C), 138.5 (C), 149.8 (C), 150.2 (C), 150.4 (C) and 192.9 (CHO); MS m/z 359 (26%), 358 (M⁺, 100), 328 (20), 327 (74) and 283 (20); HRMS calcd for $C_{24}H_{22}O_3$: 358.1569, found 358.1567.

Representative procedure for the ring-forming reactions

Benzo[c]phenanthrene 11a. KOBu^t (0.090 g, 0.81 mmol), was added to 1-(2-methylphenyl)-3,4-dihydronaphthalene-2carbaldehyde 10a (0.050 g, 0.20 mmol) dissolved in dry DMF (6 cm³), and the reaction mixture was heated under N_2 at 80 °C while being irradiated with a high-pressure Hg lamp through a quartz filter for 10 min. The reaction mixture was quenched by the addition of H₂O (50 cm³), and the organic product was extracted with Et₂O (3 \times 50 cm³). The organic layers were dried (MgSO₄) and filtered. The resultant organic phase was then evaporated under reduced pressure and the residue subjected to column chromatography (5–20% EtOAc–hexane) to afford the product benzo[c]phenanthrene **11a** (0.036 g, 78%) as a white solid: m.p. 65-67 °C (lit. m.p. 66.5-67.5 °C19); ¹H NMR (300 MHz; CDCl₃; Me₄Si) 7.63–7.81 (2H, m, $2 \times ArH$), 7.83 (1H, d, J 8.5, ArH), 7.91 (1H, d, J 8.6, ArH), 8.03 (1H, d, J 7.8, ArH) and 9.15 (1H, d, J 8.2, ArH); ²⁰ ¹³C NMR (75 MHz; CDCl₃) 125.8 (CH), 126.0 (C), 126.1 (CH), 126.8 (CH), 127.5 (CH), 127.9 (CH), 128.5 (CH), 130.3 (C), 131.0 (C) and 133.5 (C); MS m/z 229 (20%), 228 (M⁺, 100), 227 (33), 226 (40) and 113 (23); HRMS calcd for C₁₈H₁₂: 228.0939, found: 228.0939.

3-Methoxybenzo[c]phenanthrene 11b. KOBu^t (0.198 g, 1.76 mmol) was added to 1-(4-methoxy-2-methylphenyl)-3,4-dihydronaphthalene-2-carbaldehyde **10b** (0.060 g, 0.22 mmol) in dry DMF (6 cm³), and the reaction mixture was heated at 80 °C under N₂ for 20 min. After the normal work-up procedure

3-methoxybenzo[c]phenanthrene **11b** (0.053 g, 93%) was obtained as a yellow solid: m.p. 75–76 °C; IR $v_{\rm max}$ (solid)/cm⁻¹ 1612, 1503, 1463, 1428, 1358, 1258, 1298, 1265, 1228, 1029, 923, 867, 832, 797 and 750; ¹H NMR (300 MHz; CDCl₃; Me₄Si) 4.01 (3H, s, OCH₃), 7.31–7.38 (2H, m, ArH), 7.59–7.69 (2H, m, 2 × ArH), 7.78–7.86 (4H, m, 4 × ArH), 8.00 (1H, d, J 7.6, ArH) and 9.03–9.08 (2H, m, 2 × ArH); ¹³C NMR (75 MHz; CDCl₃) 55.4 (OCH₃), 108.0 (CH), 117.1 (CH), 125.1 (C), 125.8 (CH), 126.0 (CH), 126.5 (CH), 126.8 (CH), 126.9 (CH), 127.5 (CH), 127.9 (CH), 128.5 (CH), 129.5 (CH), 129.8 (C), 130.1 (C), 133.6 (C), 135.1 (C) and 157.5 (C); MS m/z 259 (27%), 258 (M⁺, 100), 216 (12), 215 (57), 213 (17) and 189 (13); HRMS calcd for C₁₉H₁₄O: 258.1044, found: 258.1043.

Pentahelicene 11c and 5,6-Dihydropentahelicene 11d. (a) KOBu^t (0.114 g, 1.02 mmol) was added to **10c** (0.076 g, 0.25 mmol) dissolved in dry DMF (9 cm³) and after subjecting the reaction mixture to the normal reaction conditions and column chromatography (5–20% EtOAc-hexane), two compounds were isolated. The major product was pentahelicene 11c (0.049 g, 70%): m.p. 135–137 °C (not recrystallised); (lit. m.p. 145 °C²⁶); ^{1}H NMR (300 MHz; CDCl $_{3};$ Me $_{4}Si)$ 7.30–7.33 (2H, m, 2 \times ArH), 7.54-7.58 (2H, m, $2 \times$ ArH), 7.91-8.03 (8H, m, $8 \times$ ArH) and 8.56 (1H, d, J 8.5, ArH);²⁷ ¹³C NMR (75 MHz; CDCl₃) 124.3 (CH), 126.2 (CH), 126.3 (CH), 127.0 (C), 127.2 (CH), 127.5 (CH), 127.8 (CH), 129.0 (CH), 130.8 (C), 132.3 (C) and 132.6 (C); MS m/z 278 (74%), 277 (M⁺, 100), 276 (95), 274 (19) and 238 (13); HRMS calcd for C₂₂H₁₄: 278.1095 Found 278.1088. 5,6-Dihydropentahelicene 11d was obtained as the minor product (0.010 g, 14%): ¹H NMR (300 MHz; CDCl₃; Me₄Si) 2.72–3.13 $(4H, m, 4 \times ArH), 6.98-7.05 (1H, m, ArH), 7.10-7.22 (2H, m,$ ArH), 7.33-7.48 (3H, m, $3 \times ArH$), 7.50-7.56 (1H, m, ArH), 7.65-7.73 (3H, m, 3 × ArH), 7.80 (1H, d, J 8.5, ArH) and 8.45 (1H, d, J 8.5, ArH); HRMS calcd for C₂₂H₁₄: 280.1255, found: 279.1183.

(b) Repeating the reaction but using 8 equivalents of KOBu^t (0.241 g, 2.15 mmol) and **10c** (0.080 g, 0.27 mmol) led to the isolation of pentahelicene **11c** in good yield (0.062 g, 82%).

9,14-Dimethoxynaphtho[1,2-a]anthracene 11e and 1-(3-methyl-1,4-dimethoxy-2-naphthyl)-2-naphthaldehyde 11f. KOBu^t (0.075 g, 0.67 mmol) was added to **10d** (0.060 g, 0.17 mmol) dissolved in dry DMF (9 cm³) and after subjecting the reaction mixture to the normal reaction conditions and column chromatography (5–20% EtOAc–hexane), two compounds were isolated, 9,14-dimethoxynaphtho[1,2-a]anthracene 11e and 1-(3methyl-1,4-dimethoxy-2-naphthyl)-2-naphthaldehyde 11f. The minor product was **11e** (0.010 g, 18%): IR ν_{max} (film)/cm⁻¹ 3050, 3005, 2932, 2837, 1731, 1617, 1591, 1559, 1504, 1473, 1451, 1412, 1363, 1289, 1113, 1096, 1060, 977, 834 and 752; ¹H NMR (300 MHz; CDCl₃; Me₄Si) 3.00, 4.20 (each 3H, s, OMe), 7.55– $7.69 (5H, m, 5 \times ArH), 7.83 (1H, d, J 8.4, ArH), 7.95-7.97 (1H, d)$ m, ArH), 8.01 (1H, d, J 8.4, ArH), 8.26 (1H, d, J 8.9, ArH), 8.32-8.41 (2H, m, 2 × ArH) and 8.56-8.59 (1H, m, ArH); 13 C NMR (75 MHz; CDCl₃) 60.2 (OCH₃), 63.6 (OCH₃), 118.5 (C), 121.8 (CH), 122.2 (CH), 123.4 (CH), 124.6 (CH), 125.0 (C), 125.5 (C), 125.6 (CH), 125.6 (CH) 125.9 (C), 125.9 (CH), 126.0 (CH), 126.7 (CH), 126.8 (C), 127.0 (CH), 128.5 (CH), 129.4 (C), 130.3 (CH), 131.3 (C), 132.7 (C), 147.8 (C) and 150.2 (C); MS m/z 338 (M⁺, 100%), 323 (92), 292 (32), 279 (25), 250 (13), 219 (36), 167 (38), 154 (31), 149 (97), 139 (30), 125 (16), 83 (22) and 71 (24); HRMS calcd for $C_{24}H_{18}O_2$: 338.1307, found: 338.1321. The second product was 1-(3-methyl-1,4-dimethoxy-2-naphthyl)-2naphthaldehyde **11f** (0.042 g, 70%): IR v_{max} (film)/cm⁻¹ 2955, 2927, 2854, 1727, 1590, 1454, 1352, 1283, 1095, 1061, 836, 797, 772 and 750; 1H NMR (300 MHz; CDCl $_3$; Me $_4Si$) 1.96 (3H, s, ArCH₃), 3.37, 3.96 (each 3H, s, OMe), 7.42–7.45 (1H, m, ArH), 7.49-7.66 (4H, m, 4 × ArH), 7.96 (1H, brd, J 8.2, 1H), 8.01 (1H, brd, J 8.7, 1H), 8.11–8.16 (2H, m, 2 × ArH), 8.21–8.24 (1H, m, ArH) and 9.90 (1H, d, J 0.8, CHO); 13C NMR (75 MHz; CDCl₃) 13.6 (ArCH₃), 61.6 (2×OCH₃), 122.3 (CH), 122.4 (CH), 122.9 (CH), 125.8 (C), 126.1 (CH), 126.6 (C), 126.7 (CH), 126.9 (CH), 127.2 (CH), 127.3 (C), 128.5 (CH), 128.7 (CH), 128.9 (CH), 129.2 (C), 131.4 (C), 132.4 (C), 136.3 (C), 142.0 (C), 150.4 (C), 150.7 (C) and 192.5 (CHO); MS *m/z* 356 (M⁺, 100%), 340 (41), 326 (79), 311 (46), 281 (44), 307 (54), 297 (40), 276 (66), 269 (37), 252 (36), 239 (38) and 150 (34); HRMS calcd for C₂₄H₂₀O₃: 356.1412, found: 356.1416.

KOBu^t (0.213 g, 1.90 mmol) was added to **10d** (0.085 g, 0.24 mmol) dissolved in dry DMF (20 cm³) and after subjecting the reaction mixture to the normal reaction conditions but without exposure to the light source followed by chromatography (5–20% EtOAc–hexane), led to the isolation of only one product 9,14-dimethoxynaphtho[1,2-a]anthracene **11e** (0.063 g, 79%).

Single crystals of compound **11e** suitable for X-ray diffraction were selected directly from the analytical samples.

Crystal structure determination of compound 11e: crystal data. $C_{24}H_{18}O_2$, M=338.38, orthorhombic, a=7.7959(9), b=20.639(3), c=11.0953(14) Å, U=1785.2(4) Å³, T=293(2) K, space group $Pca2_1$ (No. 29), Z=4, μ (Mo-K α) = 0.079 mm⁻¹, 10163 reflections measured, 1858 unique ($R_{\rm int}=0.044$) which were used in all calculations. Final R indices [$I>2\sigma(I)$], $R_1=0.0464$, $wR(F^2)=0.1268$. CCDC reference number 248479. See http://www.rsc.org/suppdata/ob/b4/b412932f/ for crystallographic data in .cif or other electronic format.

2-Bromo-1,4-dimethoxy-3-methylnaphthalene

A solution of SnCl₂·2H₂O (39.5 g, 0.175 mol) in concentrated HCl (33 cm³) was added to a warm solution of 2-bromo-3-methylnaphthoquinone (13.24 g, 0.05273 mol) in EtOH (96%, 160 cm³). H₂O was then added and the precipitate was filtered and recrystallized (H₂O) to afford the desired intermediate, 2-bromo-3-methyl naphthohydroquinone as white needles (13.08 g, 98%); m.p. 253–254°C (water) (lit. >250 °C²⁴); ¹H NMR (400 MHz; CDCl₃; Me₄Si) 2.52 (3H, s, ArCH₃), 5.31 (2H, brs, 2 × ArOH), 7.42–7.52 (2H, m, 2 × ArH) and 8.12–8.16 (2H, m, 2 × ArH); ¹³C NMR (100 MHz; CDCl₃) 15.8 (ArCH₃), 108.0 (C), 117.3 (CH), 121.1 (CH), 121.5 (C), 123.0 (C), 124.5 (C), 126.1 (CH), 126.3 (CH), 142.1 (C) and 142.5 (C).

An aqueous solution of KOH (50%, 22 cm³) was added to the intermediate naphthohydroquinone (0.502 g, 1.98 mmol) and dimethyl sulfate (6.85 cm³). After heating at reflux for 1 h the reaction mixture was extracted with CH₂Cl₂ (2 × 30 cm³), washed with aqueous 25% NH₃ (3 × 20 cm³), dried (MgSO₄) and evaporated. Recrystallisation (MeOH) gave the desired 2-bromo-1,4-dimethoxy-3-methylnaphthalene as white plates (0.491 g, 88%): m.p. 84–85 °C (MeOH) (lit. 84–85 °C^{24,28,29}); ¹H NMR (400 MHz; CDCl₃; Me₄Si) 2.55 (3H, s, ArCH₃), 3.88, 3.97 (each 3H, s, ArOCH₃), 7.41–7.56 (2H, m, 2 × ArH) and 8.01–8.08 (2H, m, 2 × ArH).

2-(1,4-Dimethoxy-3-methyl-2-naphthyl)benzaldehyde 15

A solution of *ortho*-bromobenzaldehyde **14** (0.169 0.913 mmol) in DME (8.0 cm^3) was deoxygenated by passing N_2 through the mixture for 10 min. The deoxygenated mixture was added to Pd(PPh₃)₄ (12 mol%, 0.122 g, 0.106 mmol) and stirred under N_2 for 10 min. A deoxygenated solution of arylboronic acid 9d (synthesized in the same manner as indicated earlier, 0.400 g, 1.63 mmol) in DME (3 cm³) was added to the mixture. After 10 min a deoxygenated aqueous Na₂CO₃ solution (2 M, 4.5 cm³) was added to the reaction mixture that was stirred at rt for 10 min before being heated under reflux for 42 h. The cooled solution was quenched with H_2O (40 cm³), extracted with CH_2Cl_2 (4 × 30 cm³), dried (MgSO₄) and concentrated in vacuo. The residue was purified by column chromatography on silica gel to afford the biaryl compound 15 as an orange oil (0.230 g, 82%) and recovered 1,4-dimethoxy-2-methylnaphthalene (0.028 g): IR $\nu_{max}\,(film)/cm^{-1}\,3483,3379,3070_{[el]},3014,2933,2841,2746,1717,$ 1625, 1596, 1570, 1482, 1455, 1348, 1252 and 1266; ¹H NMR

(400 MHz; CDCl₃; Me₄Si) 2.13 (3H, s, ArCH₃), 3.46, 3.92 (each 3H, s, OCH₃), 7.37 (1H, d, J 7.6, ArH), 7.49–7.59 (3H, m, 3 × ArH), 7.66–7.72 (1H, m, ArH), 8.09–8.16 (3H, m, 3 × ArH) and 9.79 (1H, s, CHO); ¹³C NMR (100 MHz; CDCl₃) 14.1 (ArCH₃), 61.1 (OCH₃), 61.3 (OCH₃), 122.2 (CH), 122.7 (CH), 125.7 (C), 125.9 (CH), 126.7 (CH), 127.1 (C), 127.3 (CH), 128.0 (CH), 128.2 (C), 128.8 (C), 131.5 (CH), 133.6 (CH), 134.1 (C), 140.8 (C), 149.7 (C), 150.3 (C) and 192.1 (CHO); MS m/z 307 (24%), 306 (M⁺, 100), 291 (21), 276 (23), 260 (17), 259 (22), 232 (27), 231 (32), 203 (21) and 202 (20); HRMS calcd for $C_{20}H_{18}O_3$: 306.1256, found 306.1256.

7,12-Dimethoxybenzo[a]anthracene 16

KOBut (0.227 g, 2.02 mmol) was added to a solution of biaryl compound 15 (0.155 g, 0.506 mmol) in DMF (15 cm³). The reaction mixture was treated in the normal manner to afford a residue that was purified by crystallization (EtOH-CH₂Cl₂hexane) to give the desired product 16 as white plates (0.129 g, 88%): m.p. 135–137 °C (EtOH–CH₂Cl₂–hexane) (lit. m.p. 136– 137 °C³0); IR $\nu_{\rm max}$ (solid)/cm⁻¹ 3001, 2935, 2835, 1944, 1730, 1622, 1603, 1567, 1449, 1409, 1360, 1252, 1214, 1189, 1165, 1121 and 1103; ¹H NMR (400 MHz; CDCl₃; Me₄Si) 3.96, 4.10 (each 3H, s, OCH₃), 7.57-7.71 (5H, m, $5 \times ArH$), 7.82 (1H, dd, J 7.6, 1.6, ArH), 8.12 (1H, d, J 9.3, ArH), 8.32–8.35 (1H, m, ArH), 8.44–8.47 (1H, m, ArH) and 9.67 (1H, d, J 8.2, ArH); ¹³C NMR (100 MHz; CDCl₃) 60.9 (OCH₃), 63.1 (OCH₃), 120.7 (C), 121.0 (CH), 122.3 (CH), 123.2 (CH), 124.2 (C), 125.9 (CH), 126.0 (CH), 127.0 (CH), 127.3 (CH), 127.3 (C), 127.6 (CH), 128.2 (CH), 128.4 (CH), 130.0 (C), 132.6 (C), 148.6 (C) and 151.1 (C); MS m/z 289 (13%), 288 (M⁺, 59), 274 (22), 273 (100), 258 (16), 257 (10), 230 (15), 202 (25) and 201 (9); HRMS calcd for C₂₀H₁₆O₂: 288.1150, found 288.1157.

2-(3-Methyl-1,4-dioxo-1,4-dihydro-2-naphthalenyl)-benzaldehyde 17

A solution of CAN (0.641 g, 1.17 mmol) in H_2O (1.0 cm³) was added dropwise to a solution of biaryl compound 15 (0.119 g, 0.390 mmol) in MeCN (5.0 cm³). After stirring for 5 min at rt the reaction mixture was extracted with CH_2Cl_2 (3 × 10 cm³), dried (MgSO₄) and concentrated in vacuo to afford the desired naphthoquinone 17 (0.087 mg, 81%) as a yellow oil: IR v_{max} $(film)/cm^{-1}$ 3069, 3020, 2958, 2928, 2857, 2743, 1775, 1726, 1699, 1595, 1572, 1482, 1459, 1377, 1291, 1198, 1160 and 1121; ¹H NMR (400 MHz; CDCl₃; Me₄Si) 1.98 (3H, s, ArCH₃), 7.26 (1H, d, J 8.0, ArH), 7.61–7.78 (4H, m, 4 × ArH), 7.97 (1H, dd, J 7.5, 1.4, ArH), 8.06-8.09 (1H, m, ArH), 8.15-8.18 (1H, m, ArH) and 9.94 (1H, s, ArCHO); 13C NMR (100 MHz; CDCl₃) 14.4 (ArMe), 126.4 (CH), 126.9 (CH), 129.2 (CH), 130.3 (CH), 132.2 (C), 132.2 (C), 132.5 (CH), 133.6 (CH), 133.6 (CH), 133.8 (CH), 134.3 (C), 135.2 (C), 143.3 (C), 145.9 (C), 183.6 (CO), 185.1 (CO) and 191.3 (CHO); MS m/z 276 (M+, 28%), 261 (19), 248 (39), 247 (63), 234 (20), 233 (100), 219 (35), 191 (22), 189 (21), 104 (20) and 76 (18); HRMS calcd for C₁₈H₁₂O₃: 276.0786, found 276.0774.

Benzo[a]anthracene-7,12-dione 18

KOBu¹ (0.097 g, 0.86 mmol) was added to a solution of biaryl naphthoquinone 17 (0.060 g, 0.22 mmol) in DMF (5 cm³). The reaction mixture was stirred at 80 °C with simultaneous irradiation with a high-pressure Hg lamp through a quartz filter for 10 min. The reaction mixture was acidified with aqueous HCl, extracted with CH_2Cl_2 (3 × 40 cm³), dried (MgSO₄) and concentrated *in vacuo*. The residue was purified by crystallisation

(EtOH–hexane) to afford the desired product **18** as yellow plates (0.046 g, 82%): m.p. 170–172°C (EtOH–hexane) (lit. m.p. 169 °C³¹); IR ν_{max} (film)/cm⁻¹ 3018, 2924, 2853, 1724, 1666, 1590, 1506, 1459, 1429, 1378, 1326, 1307 and 1277; ¹H NMR (400 MHz; CDCl₃; Me₄Si) 7.65–7.85 (4H, m, 3 × ArH), 7.94 (1H, d, J 8.0, ArH), 8.21–8.34 (3H, m, 3 × ArH), 8.41 (1H, d, J 8.6, ArH) and 9.73 (1H, d, J 8.8, ArH); ¹³C NMR (100 MHz; CDCl₃) 122.5 (CH), 126.5 (CH), 127.2 (CH), 128.7 (CH), 128.8 (2×CH), 128.8 (C), 129.9 (CH), 130.5 (C), 132.2 (C), 133.5 (CH), 134.0 (C), 134.2 (CH), 135.1 (C), 135.3 (CH), 136.7 (C), 184.0 (CO) and 186.2 (CO).

Acknowledgements

This work was supported by the National Research Foundation (NRF, GUN 2053652), Pretoria, the University of the Witwatersrand (University Research Council and Faculty Research Council). R. Mampa of this University is thanked for providing the NMR service.

References

- 1 R. G. Harvey, Polycyclic Aromatic Hydrocarbons, Wiley VCH, New York, 1997.
- 2 A. Hirsch, The Chemistry of Fullerenes, Thieme, Stuttgart, 1994.
- 3 R. Noyori, M. Yamakawa and S. Hashiguchi, *J. Org. Chem.*, 2001, **66**, 7931–7944.
- 4 R. Noyori and T. Ohkuma, Angew. Chem., Int. Ed., 2001, 40, 40-73.
- 5 M. Shibasaki, M. Kanai and K. Funabashi, *Chem. Commun.*, 2002, 1989–1999.
- 6 M. Shibasaki and N. Yoshikawa, *Chem. Rev.*, 2002, 103, 2187–2210.
 7 L. Pu, *Chem. Rev.*, 1998, 98, 2405–2494.
- 8 R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley & Sons, New York, 1994.
- 9 J. Yin, M. P. Rainka, X.-X. Zhang and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 1162–1163.
- 10 A. Terfort, H. Görls and H. Brunner, Synthesis, 1997, 79-86.
- 11 M. T. Reetz, E. W. Beuttenmüller and R. Goddard, *Tetrahedron Lett.*, 1997, **38**, 3211–3214.
- 12 P.-H. Leung, K.-H. Ng, Y. Li, A. J. P. White and D. J. Williams, Chem. Commun., 1999, 2435–2436.
- 13 C. B. de Koning, J. P. Michael and A. L. Rousseau, *Tetrahedron Lett.*, 1997, 38, 893–896.
- 14 C. B. de Koning, J. P. Michael and A. L. Rousseau, J. Chem. Soc., Perkin Trans. 1, 2000, 787–797.
- 15 C. B. de Koning, J. P. Michael and A. L. Rousseau, J. Chem. Soc., Perkin Trans. 1, 2000, 1705–1713.
- 16 C. B. de Koning, J. P. Michael, J. M. Nhlapo, R. Pathak and W. A. L. van Otterlo, *Synlett*, 2003, 705–707.
- 17 T. L. Gilchrist and R. J. Summersell, J. Chem. Soc., Perkin Trans. 1, 1988, 2595–2601.
- 18 T. L. Gilchrist and M. A. M. Healy, *Tetrahedron*, 1993, 49, 2543–2556
- 19 J. Pataki and R. G. Harvey, J. Org. Chem., 1982, 47, 20–22.
- 20 S. Kumar, Synthesis, 2001, 841-844.
- 21 Reference 1, pp. 35-39.
- 22 B. Andersh, D. L. Murphy and R. J. Olson, Synth. Commun., 2000, 30, 2091–2098.
- 23 M. S. Newman, B. Dhawan and A. Tuncay, J. Org. Chem., 1976, 41, 3924–3925.
- 24 M. F. Aldersley, F. M. Dean and B. E. Mann, J. Chem. Soc., Perkin Trans. 1, 1986, 2217–2222.
- 25 S. Hesse and G. Kirsch, Synthesis, 2001, 755-758.
- 26 I. C. Lewis and T. Edstrom, J. Org. Chem., 1963, 28, 2050-2057.
- 27 F. Teplý, I. G. Stará, I. Starý, A. Kollárovic, D. Šaman, L. Rulišek and P. Fiedler, *J. Am. Chem. Soc.*, 2002, **124**, 9175–9180.
- 28 R. Adams, T. A. Geissman, B. R. Baker and H. M. Teeter, J. Am. Chem. Soc., 1941, 63, 528–534.
- 29 G. A. Kraus and T. On Man, Synth. Commun., 1986, 16, 1037–1042.
- 30 G. M. Badger and K. R. Lynn, J. Chem. Soc., 1950, 1726–1729.
- 31 P. G. Copeland, R. E. Dean and D. McNeil, J. Chem. Soc., 1961, 1232–1237.